Abstract
Cytotherapy has received considerable attention in the field of cancer therapy, and various chemical or genetic methods have been applied to remold natural cells for improved therapeutic outcome of cytotherapy. A simple method to modify lymphocytes for cancer treatment by using a clinically used molecule, δ-aminolevulinic acid (δ-ALA), is reported here. After incubation with this molecule, tumor-targeted lymphocytes spontaneously synthesize anti-neoplastic drug protoporphyrin X (PpIX), and specifically accumulate in cancer tissue. Under periodic 630 nm laser irradiation, lymphocytes generate vesicle-like apoptotic body (Ab) containing the above-produced PpIX, and the facilitated delivery of PpIX from Ab makes an excellent therapeutic effect for Ras-mutated cancer cells under a second irradiation. Importantly, a microfluidic device is further fabricated to simplify cell sorting and drug synthesis with a one-step operation, which could promote generalization of this strategy. In vitro and in vivo studies confirm the success of such an easy-operated and global-regulated strategy for cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.