Abstract

In common practice, the pile–soil–raft interaction still remains a challenging problem in the analysis of piled-raft foundations. In the present study, a simplified analytical approach is introduced to analyze a vertically-loaded piled-raft foundation by using a developed homogenization technique called the two-phase approach. In spite of classical and simplified methods in the literature, the proposed method considers the pile–soil interaction. The other major advantage is the ability to predict the axial pile load along the pile length. The problem is solved in the domain of elasticity and simple closed-form solutions are presented for the prediction of the settlement and the pile load sharing of a piled raft as well as the pile's axial force distribution along its length. The applicability of the proposed method is validated by considering case studies and field measurements. A comparison of the results indicates that the method can be utilized safely in a proper, quick, and effective manner with the least computational effort in comparison with sophisticated numerical approaches. The raft settlement can be accurately predicted while the pile load sharing might be over/under estimated. A parametric study is also carried out to investigate the response of piled-raft foundations including the influence of the parameters of the soil and the geometric characteristics of the piles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.