Abstract

This paper outlines a computational model for the analysis of the piezoelectric behaviour of the vertebral body remodelling process. Particular attention is paid to the algorithms for the simulation of the stress energy density for each point of the geometry and the distribution of the density in the bone. In addition, the model takes into account the piezoelectric effect and the anisotropy (transversal isotropy) of the bone. A model for internal anisotropic piezoelectric bone remodelling of a human vertebra is discussed in detail. The model consists of the implementation of an algorithm which includes the elastic and electric variables in a single equation using boundary element method. The presented results show a good agreement with biological data and the model does not include any electric additional charge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.