Abstract

Two nonlocal and unknown pure qubit states can, with a certain probability of success, be discriminated unambiguously with the aid of local operations, classical communication, and shared entanglements (LOCCSE). We present a scheme for such kind of nonlocal unambiguous quantum state discrimination. This scheme consists of a nonlocal positive operator valued measurement (POVM). This nonlocal POVM can be realized by performing nonlocal unitary operations on initial system and ancillary qubits, and local von Neumann projective measurements on the ancilla plus initial system. By utilizing the degrees of freedom of the original system Hilbert space, we need far more simpler operations than those required by the original Neumark approach. We construct a quantum logic network to implement the required nonlocal POVM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.