Abstract

The fragmentation of 213 MeV/nucleon 40Ar ions by 12C targets is described within the context of a simple abrasion-ablation fragmentation model. The abrasion part of the theory utilizes a quantum-mechanical formalism based upon an optical model potential approximation to the exact nucleus-nucleus multiple-scattering series. The ablation stage of the fragmentation is treated as a compound nucleus evaporation. The decay probabilities for the various particle emission channels are computed using the EVAP-4 Monte Carlo computer program. Predictions for production cross sections for isotopes of sulfur, phosphorus, silicon, and aluminum are made and compared with experimental data. The model is also used to compare predicted and experimental element production cross sections for 1.88 GeV/nucleon 56Fe colliding with 12C and 208Pb targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.