Abstract

Western Palearctic water frogs in the genus Pelophylax are a set of morphologically similar anuran species that form hybridogenetic complexes. Fully reliable identification of species and especially of hybrid ploidy depends on karyological and molecular methods. In central Europe, native water frog populations consist of the Pelophylax esculentus complex, that is, P.lessonae (LL), P.ridibundus (RR) and the hybrid form P.esculentus that can have different karyotypes (RL, LLR and RRL). We developed existing molecular methods further and propose a simple PCR method based on size-differences in the length of the serum albumin intron-1 and the RanaCR1, a non-LTR retrotransposon of the chicken repeat (CR) family. This PCR yields taxon-specific banding patterns that can easily be screened by standard agarose gel electrophoresis and correctly identify species in all of the 160 samples that had been identified to karyotype with other methods. To distinguish ploidy levels in LR, LLR and RRL specimens, we used the ratio of the peak heights of the larger (ridibundus specific) to the smaller (lessonae specific) bands of fluorescently labelled PCR products resolved on a capillary DNA sequencer and obtained a correct assignment of the karyotype in 93% of cases. Our new method will cut down time and expenses drastically for a reliable identification of water frogs of the P.esculentus complex and potentially for identification of other hybridogenetic complexes and/or taxa, and it even serves as a good indicator of the ploidy status of hybrid individuals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call