Abstract

In this paper a study of the self-excited stick–slip oscillations of a rotary drilling system with a drag bit, using a discrete model that takes into consideration the axial and torsional vibration modes of the system, is described. Coupling between these two vibration modes takes place through a bit–rock interaction law, which accounts for both the frictional contact and the cutting processes. The cutting process introduces a delay in the equations of motion that is responsible for the existence of self-excited vibrations, which can degenerate into stick–slip oscillations and/or bit bouncing under certain conditions. From analysis of this new model it is concluded that the experimentally observed decrease of the reacting torque with the angular velocity is actually an expression of the system response, rather than an intrinsic rate dependence of the interface laws between the rock and the drill bit, as is commonly assumed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.