Abstract
A model of laser metal deposition with beam oscillation has been developed. The proposed model consists of two coupled sub-models calculating the heat transfer in the deposited part and the free surface of the molten pool, respectively. The heat transfer simulation of the deposited part solves a three-dimensional quasi-stationary heat conduction problem. The free surface of the molten pool are determined by solving the Laplace-Young equation. The developed model enables the layer-by-layer prediction of the shape of the deposited part and the resulting temperature field. It is shown that for an oscillation amplitude equal to the beam radius the peak value of the heat flux decreases by about 53% and 73% in the case of lateral oscillation and circular oscillation, respectively. Lateral oscillating laser beam results in a higher penetration depth due to the higher thermal efficiency. The amplitude of the laser beam oscillation effects the shape of the deposited wall and the deposition rate. A good correlation between the numerically calculated and experimentally observed results is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.