Abstract
A simplified static method for estimating the member forces in self-supporting lattice telecommunication towers due to both horizontal and vertical earthquake excitations is presented in this paper. The method is based on the modal superposition technique and the response spectrum approach, which are widely used for seismic analysis of linear structures. It is assumed that the lowest three flexural modes of vibration are sufficient to correctly estimate the tower's response to horizontal excitation, while only the lowest axial mode is sufficient to capture the response to vertical excitation. An acceleration profile along the height of the tower is defined using estimates of the lowest three flexural modes or the lowest axial mode, as appropriate, together with the spectral acceleration values corresponding to the associated natural periods. After the mass of the tower is calculated and lumped at the leg joints, a set of equivalent static lateral or vertical loads can be determined by simply multiplying the mass profile by the acceleration profile. The tower is then analyzed statically under the effect of these loads to evaluate the member forces. This procedure was developed on the basis of detailed dynamic analysis of ten existing three-legged self-supporting telecommunication towers with height range of 30-120 m. The maximum differences in member forces obtained with the proposed method and the detailed seismic analysis are of the order of ±25% in the extreme cases, with an average difference of ±7%. The results obtained for two towers with heights of 66 and 83 m are presented in this paper to demonstrate the accuracy and practicality of the proposed method.Key words: self-supporting tower, earthquake, vertical excitation, dynamic analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.