Abstract

The fundamental period is an important parameter for seismic design and seismic risk assessment of building structures. In this paper, a simplified theoretical method to predict the fundamental period of masonry infilled reinforced concrete (RC) frame is developed based on the basic theory of engineering mechanics. The different configurations of the RC frame as well as masonry walls were taken into account in the developed method. The fundamental period of the infilled structure is calculated according to the integration of the lateral stiffness of the RC frame and masonry walls along the height. A correction coefficient is considered to control the error for the period estimation, and it is determined according to the multiple linear regression analysis. The corrected formula is verified by shaking table tests on two masonry infilled RC frame models, and the errors between the estimated and test period are 2.3% and 23.2%. Finally, a probability-based method is proposed for the corrected formula, and it allows the structural engineers to select an appropriate fundamental period with a certain safety redundancy. The proposed method can be quickly and flexibly used for prediction, and it can be hand-calculated and easily understood. Thus it would be a good choice in determining the fundamental period of RC frames infilled with masonry wall structures in engineering practice instead of the existing methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call