Abstract

Repetitive control (RC) achieves tracking and rejection of periodic exogenous signals by incorporating a model of a periodic signal in the feedback path. To improve the performance, an inverse plant response filter (IPRF) is used. To improve robustness, the periodic signal model is bandwidth-limited. This limitation is largely dependent on the accuracy of the IPRF. A new method is presented for synthesizing the IPRF for discrete-time RC. The method produces filters in a simpler and more consistent manner than existing best-practice methods available in the literature, as the only variable involved is the selection of a windowing function. It is also more efficient in terms of memory and computational complexity than existing methods. Experimental results for a nanopositioning stage show that the proposed method yields the same or better tracking performance compared to existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.