Abstract

AbstractA simple methodology to model shear bands as strong displacement discontinuities in a mesh‐free particle method is presented. The shear band is represented as a set of sheared particles. A sheared particle is developed through enrichment by tangential displacement discontinuities. The representation of the shear band as set of cohesive segments provides a simple and versatile model of shear bands. The loss of material stability is used as the criterion for switching from a classical continuum description of the constitutive behaviour to a traction‐separation law acting on the discontinuity surface. The method is implemented for two and three dimensions. Examples of shear band progression in rate‐dependent and rate‐independent materials are presented, including the Kalthoff problem, where the transition from brittle fracture to shear banding is studied. Copyright © 2006 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.