Abstract

Fast-scan cyclic voltammetry (FSCV) is an analytical tool used to probe neurochemical processes in real-time. A major drawback for specialized applications of FSCV is that instrumentation must be constructed or modified in-house by those with expertise in electronics. One such specialized application is the newly developed fast-scan controlled-adsorption voltammetry (FSCAV) that measures basal (tonic) in vivo dopamine and serotonin concentrations. FSCAV requires additional software and equipment (an operational amplifier coupled to a transistor-transistor logic) allowing the system to switch between applying a FSCV waveform and a constant potential to the working electrode. Herein we describe a novel, simplified switching component to facilitate the integration of FSCAV into existing FSCV instruments, thereby making this method more accessible to the community. Specifically, we employ two light emitting diodes (LEDs) to generate the voltage needed to drive a NPN bipolar junction transistor, substantially streamlining the circuitry and fabrication of the switching component. We performed in vitro and in vivo analyses to compare the new LED circuit vs. the original switch. Our data shows that the novel simplified switching component performs equally well when compared to traditional instrumentation. Thus, we present a new, simplified scheme to perform FSCAV that is cheap, simple, and easy to construct by individuals without a background in engineering and electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.