Abstract

Relationships between tropical cyclone (TC) precipitation, wind, and storm damage are analyzed for China based on TCs over the period from 1984 to 2013. The analysis shows that the maximum daily areal precipitation from stations with daily precipitation of ⩾ 50 mm and the sum of wind gusts of ⩾ 13.9 m/s can be used to estimate the main damage caused by TCs, and an index combining the precipitation and wind gust of a TC (IPWT) is defined to assess the severity of the combined impact of precipitation and wind. The correlation coefficient between IPWT and the damage index for affecting TCs is 0.80, which is higher than that for only precipitation or wind. All TCs with precipitation and wind affecting China are divided into five categories, Category 0 to Category 4, based on IPWT, where higher categories refer to higher combined impacts of precipitation and wind. The combined impact category is closely related to damage category and it can be used to estimate the potential damage category in operational work. There are 87.7%, 72.9%, 69.8%, and 73.4% of cases that have the same or one category difference between damage category and combined impact category for Categories 1, 2, 3, and 4, respectively. IPWT and its classification can be used to assess the severity of the TC impact and of combined precipitation and wind conveniently and accurately, and the potential damage caused by TCs. The result will be a good supplementary data for TC intensity, precipitation, wind, and damage. In addition, IPWT can be used as an index to judge the reliability of damage data. Further analysis of the annual frequency of combined precipitation-wind impact categories reveals no significant increasing or decreasing trend in impact over China over the past 30 years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.