Abstract
Koreisha and Pukkila (1990a) have recently proposed a fast and efficient GLS estimator for the univariate ARMA time series model which appears to be far more robust than maximum likelihood methods and of comparable accuracy. The one drawback to this new estimator is that it requires use of the Cholesky decomposition. The purpose of this paper is to suggest an alternative simplified GLS estimator, which can be implemented with just repeated applications of an OLS subroutine. A limited Monte Carlo study establishes that this new estimator is just as efficient as that of Koreisha and Pukkila.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.