Abstract
The objective of this study was to discuss simplified calculation models for the piston/cylinder sliding mechanism in which boundary contact partly occurs invariably. An efficient prediction of the boundary leakage and friction is often needed, such as in a swash-plate axial piston machine whose lubrication test is hard to perform due to the mechanism complexity. In order to model this physically uncertain lubrication regime, two calculation models were compared to compute the lubrication behaviors: “rigid boundary model”, whose theoretical concept was previously reported in the literature, and “elastic boundary model”, newly proposed in this study. Developed numerical algorithms commonly facilitated the simultaneous calculation of body motion and fluid film pressure to observe piston motion, reaction forces, and power loss. The results showed that simulations using the elastic boundary model should be more helpful for the prediction in the earlier development stage than the previous model since the methodology provides much less simulation time than full-order calculation, higher accuracy than the rigid model, and useful engineering parameters such as surface stress. The proposed calculation model can be extended to various asymmetrically loaded reciprocating piston mechanisms for efficiently predicting the lubrication behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.