Abstract

Zellini (1979, Theorem 3.1) has shown how to decompose an arbitrary symmetric matrix of ordern ×n as a linear combination of 1/2n(n+1) fixed rank one matrices, thus constructing an explicit tensor basis for the set of symmetricn ×n matrices. Zellini's decomposition is based on properties of persymmetric matrices. In the present paper, a simplified tensor basis is given, by showing that a symmetric matrix can also be decomposed in terms of 1/2n(n+1) fixed binary matrices of rank one. The decomposition implies that ann ×n ×p array consisting ofp symmetricn ×n slabs has maximal rank 1/2n(n+1). Likewise, an unconstrained INDSCAL (symmetric CANDECOMP/PARAFAC) decomposition of such an array will yield a perfect fit in 1/2n(n+1) dimensions. When the fitting only pertains to the off-diagonal elements of the symmetric matrices, as is the case in a version of PARAFAC where communalities are involved, the maximal number of dimensions can be further reduced to 1/2n(n−1). However, when the saliences in INDSCAL are constrained to be nonnegative, the tensor basis result does not apply. In fact, it is shown that in this case the number of dimensions needed can be as large asp, the number of matrices analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.