Abstract

When astronomers want to study the thousands of planets they’ve discovered beyond our solar system, one of their best tools is analyzing the light that shines through the planets’ atmospheres from stars behind them. The light can reveal the chemical composition of an exoplanet’s atmosphere and provide clues about what the planet is like. But many exoplanets’ atmospheres contain suspended aerosol particles that form light-blocking hazes and clouds and frustrate scientists’ attempts to get good spectroscopic data. If scientists knew what the chemical composition of the aerosols was, they could correct for this effect. “Aerosols have been one of the most pervasive puzzles in the study of exoplanets,” says Laura Kreidberg of the Max Planck Institute for Astronomy, who was not involved with the work. Peter Gao of the University of California, Berkeley, and colleagues gathered spectral data about exoplanets that comprised a range of temperatures and gravities, then fed

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.