Abstract

The basic particle swarm optimization (bPSO) has some demerits, such as relapsing into local extremum, slow convergence velocity and low convergence precision in the late evolutionary. Three algorithms, based on the simple evolutionary equations and the extrenum disturbed arithmetic operators, are proposed to overcome the demerits of the bPSO. The simple PSO (sPSO) discards the particle velocity and reduces the bPSO from the second order to the first order difference equation. The evolutionary process is only controlled by the variables of the particles position. The extremum disturbed PSO (tPSO) accelerates the particles to overstep the local extremum. The experiment results of some classic benchmark functions show that the sPSO improves extraordinarily the convergence velocity and precision in the evolutionary optimization, and the tPSO can effectively break away from the local extremum. tsPSO, combined the sPSO and tPSO, can obtain the splendiferous optimization results with smaller population size and evolution generations. The algorithms improve the practicality of the particle swarm optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.