Abstract

Lentiviral vectors derived from the human immunodeficiency type 1 virus (HIV-1 LV) are among the finest tools available today for the genetic modification of human monocyte-derived dendritic cells (MDDCs). However, this process is largely inefficient because MDDCs show a strong resistance to HIV-1 transduction. Here we describe a step-by-step protocol from the production of LVs to cell transduction that allows the efficient genetic modification of MDDCs. This protocol can be completed in 23 d from the initial phase of LV production to the final analysis of the results of MDDC transduction. The method relies on the simultaneous addition of HIV-1 LVs along with noninfectious virion-like particles carrying Vpx, a nonstructural protein encoded by the simian immunodeficiency virus (Vpx-VLPs). When thus provided in target cells, Vpx exerts a strong positive effect on incoming LVs by counteracting the restriction present in MDDCs; accordingly, 100% of cells can be transduced with low viral inputs. Vpx-VLPs will improve the efficiency of LV-mediated transduction of MDDCs with vectors for both ectopic gene expression and depletion studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.