Abstract

Anthropogenic nitrogen (N) deposition has had substantial impacts on forests of North America. Managers seek to monitor deposition to identify areas of concern and establish critical loads, which define the amount of deposition that can be tolerated by ecosystems without causing substantial harm. We present a new monitoring approach that estimates throughfall inorganic N deposition from N concentration in lichens collected on site. Across 84 study sites in western North America with measured throughfall, a single regression model effectively estimated N deposition from lichen N concentration with an R2 of 0.58 and could be improved with the addition of climate covariates including precipitation seasonality and temperature in the wettest quarter to an R2 of 0.74. By restricting the model to the more intensively sampled region including Oregon, Washington, and California, the R2 increased to 0.77. Because lichens are readily available, analysis is cost-effective, and accuracy is unaffected by mountainous terrain, this method allows development of deposition estimates at sites across broad spatial and topographic scales. Our approach can allow land managers to identify areas at risk of N critical load exceedance, which can be used for planning and management of air pollution impacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.