Abstract

Temperature is a critical parameter for the GaN HEMT as it sharply impacts the electrical characteristics of the device more than for SiC or Si MOSFETs. Either when designing a power converter or testing a device for reliability and robustness characterizations, it is essential to estimate the junction temperature of the device. For this aim, manufacturers provide compact models to simulate the device in SPICE-based simulators. These models provide the junction temperature, which is considered uniform along the channel. We demonstrate through two-dimensional numerical simulations that this approach is not suitable when the device undergoes high electrothermal stress, such as during short circuit (SC), when the temperature distribution along the channel is strongly not uniform. Based on numerical simulations and experimental measurements on a 650 V/4 A GaN HEMT, we derived a thermal network suitable for SPICE simulations to correctly compute the junction temperature and the SC current, even if not providing information about the possible failure of the device due to the formation of a local hot spot. For this reason, we used a second thermal network to estimate the maximum temperature reached inside the device, whose results are in good agreement with the experimental observed failures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.