Abstract

Deep neural networks give us a powerful method to model the training dataset’s relationship between input and output. We can regard that as a complex adaptive system consisting of many artificial neurons that work as an adaptive memory as a whole. The network’s behavior is training dynamics with a feedback loop from the evaluation of the loss function. We already know the training response can be constant or shows power law-like aging in some ideal situations. However, we still have gaps between those findings and other complex phenomena, like network fragility. To fill the gap, we introduce a very simple network and analyze it. We show the training response consists of some different factors based on training stages, activation functions, or training methods. In addition, we show feature space reduction as an effect of stochastic training dynamics, which can result in network fragility. Finally, we discuss some complex phenomena of deep networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.