Abstract

We present a simple theoretical analysis of the effective electron mass (EEM) at the Fermi level for III–V, ternary and quaternary materials, on the basis of a newly formulated electron energy spectra in the presence of light waves whose unperturbed energy band structures are defined by the three-band model of Kane. The solution of the Boltzmann transport equation on the basis of this newly formulated electron dispersion law will introduce new physical ideas and experimental findings under different external conditions. It has been observed that the unperturbed isotropic energy spectrum in the presence of light changes into an anisotropic dispersion relation with the energy-dependent mass anisotropy. In the presence of light, the conduction band moves vertically upward and the band gap increases with the intensity and colours of light. It has been found, taking n-InAs, n-InSb, n-Hg1−xCdxTe and n-In1−xGaxAsyP1−y lattice matched to InP as examples, that the EEM increases with increasing electron concentration, intensity and wavelength in various manners. The strong dependence of the effective momentum mass (EMM) at the Fermi level on both the light intensity and wavelength reflects the direct signature of the light waves which is in contrast with the corresponding bulk specimens of the said materials in the absence of photo-excitation. The rate of change is totally band-structure-dependent and is influenced by the presence of the different energy band constants. The well known result for the EEM at the Fermi level for degenerate wide gap materials in the absence of light waves has been obtained as a special case of the present analysis under certain limiting conditions, and this compatibility is the indirect test of our generalized formalism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.