Abstract

We study a sufficient condition for proving the stability of a black hole when the master equation for linear perturbation takes the form of the Schrödinger equation. If the potential contains a small negative region, the S-deformation method is usually used to show the non-existence of an unstable mode. However, in some cases, it is hard to find an appropriate deformation function analytically because the only way found so far to find it is by trial-and-error. In this paper, we show that it is easy to find a regular deformation function by numerically solving the differential equation such that the deformed potential vanishes everywhere, when the spacetime is stable. Even if the spacetime is almost marginally stable, our method still works. We also discuss a simple toy model which can be solved analytically, and show that the condition for the non-existence of a bound state is the same as that for the existence of a regular solution for the differential equation in our method. From these results, we conjecture that our criteria is also a necessary condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.