Abstract

A brief survey has shown that although scaling-up techniques in pneumatic conveying systems have generally been based on laboratory-scale test data, there still exists a divergence of opinions about the right choice of certain basic parameters such as solids friction factor and air friction factor. In this article, a simple model for pressure drop calculation has been proposed based on the classical Darcy's equation with some modifications. A parameter K, called pressure drop coefficient, has been shown to be independent of pipe diameter and hence suitable for scaling up to pipe sizes different from those used in laboratory-scale tests. For each of the bulk material and pipe size combinations used in this study, we calculated the standard deviation of predicted pressure values from the experimental values along the central 45° line passing through the origin; it varied from±165 mbar to a maximum±285 mbar. It has been shown that the model can be used for both horizontal and vertical pneumatic conveying.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.