Abstract
Due to its unique electronic and optical properties, graphene has been used to design tunable optical absorbers. In this paper, we propose a plasmonic absorber consisting of non-concentric graphene nanodisk arrays, which is designed to operate in the mid-infrared spectral range and is capable of achieving nearly perfect absorption. Two perfect absorption peaks are produced due to the impedance of the structure, which matches that of the free space. The influences of the thicknesses of the dielectric layer, the size of graphene nanodisk, and the incident conditions on the absorption are studied. Moreover, the absorption intensity can be independently tuned by varying the Fermi levels of two graphene nanodisks. Furthermore, the polarization-independent absorbance of the absorber exceeds 95% under oblique incidence, and remains very high over a wide angle. This proposed absorber has potential applications in optical detectors, tunable sensors, and band-pass filters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.