Abstract

Methods and experimentsIn this study, a functionalized multiwalled carbon nanotube (MWCNT)-coated solid-phase microextraction (SPME) fiber was developed for concentrating analytes in aqueous samples. Sodium deoxycholate (NaDC) was used as a dispersing agent for non-covalent modification of MWCNTs. The coating showed porous structure and large adsorption capacity. To investigate the capability of this MWCNTs/NaDC SPME fiber, it was applied to the analysis of phenols in aqueous solution. After extraction, the analytes were desorbed in an acetonitrile–water solution and analyzed using high-performance liquid chromatography.ResultsThe MWCNTs/NaDC fiber exhibited good analytical performance, and fine preparation reproducibility was obtained with the relative standard deviations (RSDs) ranging from 4.9% to 10.2% (n = 6) in one batch, from 5.7% to 11.9% (n = 3) among different batches. Under the optimum extraction conditions, the detection limits were 0.15–0.30 ng/mL(S/N = 3), the linear detection ranges were 1–100 ng/mL (R2 ≥ 0.9997) for these analytes, and good recoveries (80.3–95.4%) were obtained for the spiked samples.ConclusionThis is a simple and accurate pretreatment method for the analysis of phenols in aqueous samples.

Highlights

  • Phenols are hydroxyl-containing derivatives of aromatic hydrocarbons, which are one of very toxic organic contaminants [1, 2]

  • The multiwalled carbon nanotube (MWCNT)/NaDC fiber exhibited good analytical performance, and fine preparation reproducibility was obtained with the relative standard deviations (RSDs) ranging from 4.9% to 10.2% (n = 6) in one batch, from 5.7% to 11.9% (n = 3) among different batches

  • The optimized method was applied to the determination of phenols in samples from the South China Sea and Wastewater. 10 mL of aqueous solution was extracted by this novel MWCNTs/NaDC fiber without any pretreatment, the results indicated that Phenol was detected in the wastewater(3.64 ng/mL), while the concentrations of 2-NP, 4-NP, 2,4-DMP and 2,4-DCP were below the LODs

Read more

Summary

Introduction

Phenols are hydroxyl-containing derivatives of aromatic hydrocarbons, which are one of very toxic organic contaminants [1, 2]. In the past few years, solid-phase microextraction (SPME) have been developed for the extraction of phenols [6,7,8,9] The obvious advantages of SPME are solvent-free process, simplicity of operation, and a short extraction time, which reduces contamination of the sample and loss of analytes [10, 11]. It can combine sampling, extraction and enrichment into a single step [12].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call