Abstract

A method for studying the coding properties of a multicompartmental integrate-and-fire neuron of arbitrary geometry is presented. Depolarization at each compartment evolves like a leaky integrator with an after-firing reset imposed only at the trigger zone. The frequency of firing at the steady-state regime is related to the properties of the multidimensional input. The decreasing variability of subthreshold depolarization from the dendritic tree to the trigger zone is shown for an input that is corrupted by a white noise. The role of a Poissonian noise is also investigated. The proposed method gives an estimate of the mean interspike interval that can be used to study the input–output transfer function of the system. Both types of the stochastic inputs result in broadening the transfer function with respect to the deterministic case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.