Abstract

Abstract Seasonal prediction systems are subject to systematic errors, including those introduced during the initialization procedure, that may degrade the forecast skill. Here we use a novel statistical postprocessing correction scheme that is based on canonical correlation analysis (CCA) to relate errors in ocean temperature arising during initialization with errors in the predicted sea surface temperature fields at 1–12-month lead time. In addition, the scheme uses CCA of simultaneous SST fields from the prediction and corresponding observations to correct pattern errors. Finally, simple scaling is used to mitigate systematic location and phasing errors as a function of lead time and calendar month. Applying this scheme to an ensemble of seven seasonal prediction models suggests that moderate improvement of prediction skill is achievable in the tropical Atlantic and, to a lesser extent, in the tropical Pacific and Indian Ocean. The scheme possesses several adjustable parameters, including the number of CCA modes retained, and the regions of the left and right CCA patterns. These parameters are selected using a simple tuning procedure based on the average of four skill metrics. The results of the present study indicate that errors in ocean temperature fields due to imperfect initialization and SST variability errors can have a sizable negative impact on SST prediction skill. Further development of prediction systems may be able to remedy these impacts to some extent. Significance Statement The prediction of year-to-year climate variability patterns, such as El Niño, offers potential benefits to society by aiding mitigation and adaptation efforts. Current prediction systems, however, may still have substantial room for improvement due to systematic model errors and due to imperfect initialization of the oceanic state at the start of predictions. Here we develop a statistical correction scheme to improve prediction skill after forecasts have been completed. The scheme shows some moderate success in improving the skill for predicting El Niño and similar climate patterns in seven prediction systems. Our results not only indicate a potential for improving prediction skill after the fact but also point to the importance of improving the way prediction systems are initialized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call