Abstract
Abstract Electromyography (EMG) signals provide significant information of muscle activity that may be used, among others, to estimate the activation stages during a certain activity or to predict fatigue. Heart activity or electrocardiogram (ECG) is one of the main contamination sources, especially in trunk muscles. This paper proposes a novel method based on Singular Spectrum Analysis (SSA) and frequency analysis to separate both signals present in the raw data. The performance of the method has been compared in time and frequency domains with traditional high-pass filtering or novel techniques such as Complete Ensemble Empirical Mode Decomposition or Wavelets analysis. The results show that for both time and frequency domains the proposed approach outperforms the other methods. Thus, the proposed SSA approach is a valid method to remove the ECG artifact from the contaminated EMG signals without using an ECG reference signal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.