Abstract
Hydrogen peroxide (H2O2) is widely used in the synthesis of organic chemicals, bleaching of paper pulp, and the treatment of wastewater and as a food additive, important mediator of redox processes in natural water, and a disinfectant. However, H2O2 stock solution is unstable and slowly decomposes when exposed to, for example, light, elevated temperatures, or metal compounds. Therefore, the ability to measure the exact concentration of H2O2 stock solution is important for its proper use in diverse applications. This work proposes a simple method for the spectrophotometric determination of H2O2 solution via chemical reaction with sodium hypochlorite that is inexpensive and easy to acquire. The proposed method is based on the stoichiometric spectral change of hypochlorite ion at 292.5nm following a redox reaction with a sample solution of H2O2. Due to high relationship between the spectral delta value and the applied H2O2 concentration (0.00188-0.03000%), H2O2 stock solution can be easily quantified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.