Abstract

Surface hopping studies on supramolecular and nanoscale systems suffer severely from the trivial crossing problem, arising due to high density of adiabatic potential energy surfaces. We present a straightforward solution to the problem by introducing a self-consistency test to the well-known fewest switches surface hopping (FSSH) procedure. If the test is failed, the hopping probabilities are corrected with a simple procedure. The novel self-consistent fewest switches surface hopping (SC-FSSH) approach is applied to the Holstein Hamiltonian to study the time-dependence of the electron population. Already in the five-state system, SC-FSSH allows us to reduce the simulation time 10(4)-fold to achieve the FSSH accuracy. The reliable performance and simple formulation of SC-FSSH greatly expands the applicability range of the surface hopping method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call