Abstract

We developed a simple, single-layer urban canopy model, and comparedit to both multi-layer and slab models. Our single-layer model has thefollowing features: (a) It is a column model of energy and momentumexchange between an urban surface and the atmosphere, (b) it includesthe influence of street canyons, which are parameterized to representthe urban geometry, (c) it includes shadowing from buildings andreflection of radiation, and (d) it estimates both the surfacetemperatures of, and heat fluxes from, three surface types: roof, wall,and road. In the simulation of the single-layer model, the roof washottest during the daytime, but coolest from midnight to early morning.This is consistent with output from the multi-layer model and fieldobservations at a residential area on a clear, summer day. The diurnalvariation of the energy budget from the single-layer model agrees wellwith that from the multi-layer model. Our single-layer model'sperformance is nearly that of a multi-layer model for studyingmesoscale heat islands. Nevertheless, it is simply parameterized,and thus easily included in larger-scale atmospheric models. The slabmodel has the largest nighttime cooling rate of the three models. Toovercome this, it needs more adjustments than for the canopy models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call