Abstract
Interactive segmentation seeks to incorporate human knowledge into segmentation models and thereby reducing the total amount of editing of auto-segmentations. By performing only interactions which provide new information, segmentation performance may increase cost-effectively. The aim of this study was to develop, evaluate and test feasibility of a deep learning-based single-cycle interactive segmentation model with the input being computer tomography (CT) and a small amount of information rich contours. A single-cycle interactive segmentation model, which took CT and the most cranial and caudal contour slices for each of 16 organs-at-risk for head-and-neck cancer as input, was developed. A CT-only model served as control. The models were evaluated with Dice similarity coefficient, Hausdorff Distance 95th percentile and average symmetric surface distance. A subset of 8 organs-at-risk were selected for a feasibility test. In this, a designated radiation oncologist used both single-cycle interactive segmentation and atlas-based auto-contouring for three cases. Contouring time and added path length were recorded. The medians of Dice coefficients increased with single-cycle interactive segmentation in the range of 0.004 (Brain)-0.90 (EyeBack_merged) when compared to CT-only. In the feasibility test, contouring time and added path length were reduced for all three cases as compared to editing atlas-based auto-segmentations. Single-cycle interactive segmentation improved segmentation metrics when compared to the CT-only model and was clinically feasible from a technical and usability point of view. The study suggests that it may be cost-effective to add a small amount of contouring input to deep learning-based segmentation models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.