Abstract

In this paper, a simple beam theory accounting for shear deformation effects with one unknown is proposed for static bending and free vibration analysis of isotropic nanobeams. The size-dependent behaviour is captured by using the nonlocal differential constitutive relations of Eringen. The governing equation of the present beam theory is obtained by using equilibrium equations of elasticity theory. The present theory has strong similarities with nonlocal Euler–Bernoulli beam theory in terms of the governing equation and boundary conditions. Analytical solutions for static bending and free vibration are derived for nonlocal beams with various types of boundary conditions. Verification studies indicate that the present theory is not only more accurate than Euler–Bernoulli beam theory, but also comparable with Timoshenko beam theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.