Abstract

As originally proposed, type classes provide overloading and ad-hoc definition, but can still be understood (and implemented) in terms of strictly parametric calculi. This is not true of subsequent extensions of type classes. Functional dependencies and equality constraints allow the satisfiability of predicates to refine typing; this means that the interpretations of equivalent qualified types may not be interconvertible. Overlapping instances and instance chains allow predicates to be satisfied without determining the implementations of their associated class methods, introducing truly non-parametric behavior. We propose a new approach to the semantics of type classes, interpreting polymorphic expressions by the behavior of each of their ground instances, but without requiring that those behaviors be parametrically determined. We argue that this approach both matches the intuitive meanings of qualified types and accurately models the behavior of programs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.