Abstract

In the article, authors present a numerical method for modelling a laminar-turbulent transition in magnetohydrodynamic flows. The small magnetic Reynolds number approach is considered. Velocity, pressure and electrical potential are decomposed to the sum of state values and finite amplitude perturbations. A solver based on the Nektar++ framework is described. The authors suggest using small-length local perturbations as a transition trigger. They can be imposed by blowing or by electrical enforcing. The stability of the Hartmann flow and the flow in the bend are considered as examples. Tables 4, Figs 19, Refs 28.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.