Abstract

We herein report the pure and carbon doped TiO2 nanocrystalline thin films synthesized by simple chemical bath deposition technique . The as-deposited films were annealed at 600 °C for 5 h in ambient atmosphere in order to improve crystallinity and structural perfection. The influence of carbon doping on structural, optical, and morphology of thin films was studied by X-ray diffraction (XRD), Fourier Infrared spectra, UV–Vis Spectra, photoluminescence, and atomic force micrograph images. XRD results showed that both pristine and carbon doped films formed mixture of anatase (A) and rutile (R) type phase. The surface roughness has been found to decrease with the increase of the dopant concentration as investigated by atomic force microscopy. The UV–Vis spectra confirmed that incorporation of carbon in the TiO2 lattice introduced intermediate bands into its narrowed forbidden gap, leading to remarkable red-shifts in the optical absorption edges, together with significantly improved photocatalytic activity of the TiO2 thin films. The photocatalytic activities of the TiO2 films were evaluated by degradation of methylene blue rhodamine B in an aqueous solution under ultraviolet light irradiation. Carbon doped TiO2 film exhibited excellent photocatalytic activities, when compared with undoped TiO2 film. The improvement mechanism by carbon doping was also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.