Abstract

Nanocomposites (denoted RGO/ZnONRA) comprising reduced graphene oxide (RGO) draped over the surface of zinc oxide nanorod array (ZnONRA) were produced via a simple low-temperature route, dispensing with the need for hydrothermal growth, electrochemical deposition or other complex treatments. The amount of deposited RGO can be readily tuned by controlling the concentration of graphene oxide (GO). Interestingly, the addition of Sn(2+) not only enables the reduction of GO, but also functions as a bridge that connects the resulting RGO and ZnONRA. Remarkably, the incorporation of RGO improves the visible-light absorption and reduces the bandgap of ZnO, thereby leading to the markedly improved visible-light photocatalytic performance. Moreover, RGO/ZnONRA nanocomposites exhibit a superior stability as a result of the surface protection of ZnONRA by RGO. The mechanism on the improved photocatalytic performance based on the cophotosensitizations under the visible-light irradiation has been proposed. This simple yet effective route to the RGO-decorated semiconductor nanocomposites renders the better visible-light utilization, which may offer great potential for use in photocatalytic degradation of organic pollutants, solar cells, and optoelectronic materials and devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call