Abstract
Buchholz [4] simplified the system of ordinal notations of the Schütte school (cf. [12]), by using the notion of collapsing functions (cf. [5]). In this paper we give a simple relationship between Buchholz's new system of ordinal notations and Takeuti's system of ordinal diagrams. From this simple relationship it turns out that the structures of these two systems are very close.We give two systems OT(I) (§1) and OT(I, A) (§2) of ordinal notations which are considered generalizations of Buchholz's original system, where I and A are well-ordered sets. The original system OT of Buchholz [4] is OT(ω + 1, {0}) in our sense. Here the set OT(I) of ordinal notations is defined as a subset of the set Od(I) of ordinal diagrams in [6], and the set OT(I, A) of ordinal notations as a subset of the set O(I, A) of ordinal diagrams in [14].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.