Abstract
The relativistic Doppler effect comes from the fact that observers in different inertial reference frames experience space and time differently, while the speed of light always remains the same. Consequently, a wave packet of light exhibits different frequencies, wavelengths, and amplitudes. In this paper, we present a local approach to the relativistic Doppler effect based on relativity, spatial and time translational symmetries, and energy conservation. Afterwards, we investigate the implications of the relativistic Doppler effect for the quantum state transformations of wave packets of light and show that a local photon is a local photon at the same point in the spacetime diagram in all inertial frames.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.