Abstract

Summary In classrooms where most students are simply told that , accept the fact, and move on, methods for finding lower or upper bound on are usually not taught. Here, I consider a University of Tokyo entrance exam problem: Prove that , I provide students with a simple, yet nontraditional, proof method. In particular, this method does not require a calculator (as in many exams), cumbersome circle geometry, direct use of calculus-based methods, or partial sums of any infinite series.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.