Abstract

Several theorems are named after the Italian mathematician Vitali. In this note, we provide a simple proof of an extension of Vitali's Theorem on the existence of nonmeasurable sets. Specifically we show, without using any decomposition theorems, that there does not exist a nontrivial, atom-less, σ-additive and translation invariant set function L from the power set of the real line to the extended real numbers with L([0, 1]) = 1. (Note that L is not assumed to be nonnegative.)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.