Abstract

We present a relatively simple and mostly elementary proof of the Lévy–Khintchine formula for subordinators. The main idea is to study the Poisson process time-changed by the subordinator. This is a compound Poisson process which is easy to investigate using elementary probabilistic techniques. It turns out that its rate equals the value of the Laplace exponent of the leading subordinator at 1, and all other characteristics of the subordinator affect just the distribution of summands. The technical tools used are conditional expectations, probability generating function and convergence of discrete random variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.