Abstract

In this paper we provide a simple proof of the extension theorem for partial orderings due to Suzumura [1983] when the domain of the partial order is finite. The extension theorem due to Szpilrajn [1930] follows from this theorem. Szpilrajns extension theorem is used to show that an asymmetric binary relation is contained in the asymmetric part of a linear order if and only if it is acyclic. This theorem is then applied to prove three results. Finally we introduce the concept of a threshold choice function, and our third result says that such choice functions are the only ones to satisfy a property called functional acyclicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.