Abstract

IntroductionIn sub-Saharan Africa, vital signs are a feasible option for monitoring critically ill patients. We assessed how admission vital signs data predict in-hospital mortality among patients with sepsis. In particular, we assessed whether vital signs data can be incorporated into a prognostic index with reduced segmentation in the values of included variables.MethodsSubjects were patients with sepsis hospitalized in Uganda, who participated in two cohort studies. Using restricted cubic splines of admission vital signs data, we predicted probability of in-hospital death in the development cohort and used this information to construct a simple prognostic index. We assessed the performance of the index in a validation cohort and compared its performance to that of the Modified Early Warning Score (MEWS).ResultsWe included 317 patients (167 in the development cohort and 150 in the validation cohort). Based on how vital signs predicted mortality, we created a prognostic index giving a score of 1 for: respiratory rates ≥30 cycles/minute; pulse rates ≥100 beats/minute; mean arterial pressures ≥110/<70 mmHg; temperatures ≥38.6/<35.6°C; and presence of altered mental state defined as Glasgow coma score ≤14; 0 for all other values. The proposed index (maximum score = 5) predicted mortality comparably to MEWS. Patients scoring ≥3 on the index were 3.4-fold (95% confidence interval (CI) 1.6 to 7.3, P = 0.001) and 2.3-fold (95% CI 1.1 to 4.7, P = 0.031) as likely to die in hospital as those scoring 0 to 2 in the development and validation cohorts respectively; those scoring ≥5 on MEWS were 2.5-fold (95% CI 1.2 to 5.3, P = 0.017) and 1.8-fold (95% CI 0.74 to 4.2, P = 0.204) as likely to die as those scoring 0 to 4 in the development and validation cohorts respectively.ConclusionAmong patients with sepsis, a prognostic index incorporating admission vital signs data with reduced segmentation in the values of included variables adequately predicted mortality. Such an index may be more easily implemented when triaging acutely-ill patients. Future studies using a similar approach may develop indexes that can be used to monitor treatment among acutely-ill patients, especially in resource-limited settings.

Highlights

  • In sub-Saharan Africa, vital signs are a feasible option for monitoring critically ill patients

  • 1.6 to 7.3, P = 0.001) as likely to die in hospital as those scoring 0 to 2; those scoring ≥5 on Modified Early Warning Score (MEWS) were 2.5-fold as likely to die as those scoring 0 to 4 (Table 5)

  • Performance of the proposed index and MEWS in the validation cohort The proposed index performed well and comparably to MEWS in the validation cohort; patients scoring ≥3 on the proposed index were 2.3-fold as likely to die as those scoring 0 to 2; those scoring ≥5 on MEWS were 1.8-fold as likely to die as those scoring 0 to 4 (Table 5)

Read more

Summary

Introduction

In sub-Saharan Africa, vital signs are a feasible option for monitoring critically ill patients. Studies are increasingly being performed in the region to test various interventions, In resource-rich environments, vital parameters such as the central venous pressure (CVP), mean arterial pressure (MAP), and central venous oxygen saturation (ScvO2) commonly guide treatment of patients with sepsis [3]. Initial values of these variables and subsequent changes thereof are considered when deciding whether or not to give, escalate, or de-escalate interventions such as intravenous fluids, diuretics, supplemental oxygen, blood transfusion, and vasopressors or, if needed, vasodilators [4]. It is difficult to use such variables to monitor treatment in resource-limited settings, where monitoring facilities are scarce

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call