Abstract

An efficient process for the recovery of palladium from waste printed circuits boards (PCBs) is detailed. Palladium is employed as an electrode material in multi-layer ceramic capacitors (MLCCs). These components can be easily removed from PCBs by de-soldering. As palladium is alloyed with silver, its dissolution is readily achieved using dilute nitric acid. As a result, a solution containing palladium along with base metals, mostly copper and iron, is obtained. This solution is then processed through solvent extraction (SX) with a solvent based on N,N′-dimethyl,N,N′-dibutyltetradecylmalonamide (BDMA), a robust extracting molecule previously developed in the frame of the reprocessing of waste nuclear fuel. The volume of effluents generated during the SX sequence is limited: iron scrubbing is operated with a very low aqueous to organic phase volume ratio, no specific metal chelator is required for palladium stripping, and no shift from acidic to basic media is required. Finally, a ca 1 g/L Pd(II) aqueous solution with 99,4% purity is obtained, from which palladium is directly isolated as dichlorodiammine palladium(II) salt (Pd(NH3)2Cl2) after precipitation with ammonia. Overall, palladium is quantitatively recovered from the leaching solution, and no palladium was detected in the remaining solid residue. Purity is high, as no contaminating metal could be detected in the final palladium salt. The proposed approach is simple and complementary to existing hydrometallurgical processes dedicated to gold and copper recovery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call