Abstract

The collapse pressure of pipelines containing corrosion defects is usually predicted by deterministic methods, either numerically or through empirical formulations. The severity of each individual corrosion defect can be determined by comparing the differential pressure during operation with the estimated collapse pressure. A simple deterministic procedure for estimating the collapse pressure of pipes with narrow and long defects has been recently proposed by Netto (2010). This formulation was based on a combined small-scale experimental program and nonlinear numerical analyses accounting for different materials and defect geometries. However, loads and resistance parameters have uncertainties which define the basic reliability problem. These uncertainties are mailyrelated to the geometric and material parameters of the pipe and the operational conditions. This paper presents additional experimental tests on corroded pipes under external pressure. The collapse pressure calculated using the equation proposed by Netto (2010) is compared with this new set of experiments and also with test results available in open literature. These results are used to estimate the equation uncertainty. Finally, a sensitivity analysis is performed to identify how geometric parameters of the defects influence the reduction of collapse pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call