Abstract

BackgroundA simple noninvasive model to predict obstructive coronary artery disease (OCAD) may promote risk stratification and reduce the burden of coronary artery disease (CAD). This study aimed to develop pre-procedural, noninvasive prediction models that better estimate the probability of OCAD among patients with suspected CAD undergoing elective coronary angiography (CAG).MethodsWe included 1262 patients, who had reliable Framingham risk variable data, in a cohort without known CAD from a prospective registry of patients referred for elective CAG. We investigated pre-procedural OCAD (≥50% stenosis in at least one major coronary vessel based on CAG) predictors.ResultsA total of 945 (74.9%) participants had OCAD. The final modified Framingham scoring (MFS) model consisted of anemia, high-sensitivity C-reactive protein, left ventricular ejection fraction, and five Framingham factors (age, sex, total and high-density lipoprotein cholesterol, and hypertension). Bootstrap method (1000 times) revealed that the model demonstrated a good discriminative power (c statistic, 0.729 ± 0.0225; 95% CI, 0.69–0.77). MFS provided adequate goodness of fit (P = 0.43) and showed better performance than Framingham score (c statistic, 0.703 vs. 0.521; P < 0.001) in predicting OCAD, thereby identifying patients with high risks for OCAD (risk score ≥ 27) with ≥70% predictive value in 68.8% of subjects (range, 37.2–87.3% for low [≤17] and very high [≥41] risk scores).ConclusionOur data suggested that the simple MFS risk stratification tool, which is available in most primary-level clinics, showed good performance in estimating the probability of OCAD in relatively stable patients with suspected CAD; nevertheless, further validation is needed.

Highlights

  • A report from the national cardiovascular data registry of the American College of Cardiology showed that only 41% of patients undergoing elective coronary angiography (CAG) are diagnosed as having obstructive coronary artery disease (OCAD); a better risk stratification to increase pretest probability of coronary artery disease (CAD) appears warranted [1]

  • Non-invasive diagnostic technology advancements, such as stress testing and computed tomography (CT) scanning adopted to increase the pretest probability of CAD in most tertiary hospitals, are available, high costs and unavailability limit their application in daily clinical practice

  • We hypothesized that the addition of new contemporary predictors to traditional Framingham risk factors could increase the accuracy of predicting anatomically significant CAD and, the novel model could be used in a broader population with suspected CAD

Read more

Summary

Introduction

A report from the national cardiovascular data registry of the American College of Cardiology showed that only 41% of patients undergoing elective coronary angiography (CAG) are diagnosed as having obstructive coronary artery disease (OCAD); a better risk stratification to increase pretest probability of coronary artery disease (CAD) appears warranted [1]. Chen et al BMC Cardiovascular Disorders (2018) 18:7 variables (male sex and previous percutaneous coronary intervention (PCI)) and four biomarkers (midkine, adiponectin, apolipoprotein C-I, and kidney injury molecule-1), among patients with known CAD (e.g., patients with previous acute myocardial infarctions (MI), who had PCI, or who underwent coronary artery bypass grafting (CABG)). Whether this model could predict CAD in patients presenting at primary-level hospitals or clinics is unknown [5]. This study aimed to develop pre-procedural, noninvasive prediction models that better estimate the probability of OCAD among patients with suspected CAD undergoing elective coronary angiography (CAG)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.